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Abstract

Tensor methods are a class of general purpose methods for solving ystems of nonlinear

equations. They are especially intended to efficiently solve problenis where the Jacobian

matrix at the solution is singular or ill-conditioned, while remaining at least as efficient as

standard methods on nonsingular problems. Their distinguishing feature is that they base each

iteration on a quadratic model of the nonlinear function. The model has a simple second order

term that allows it to interpolate more information about the nonlinear function than stan-

- dard, linear model based methods, without significantly increasing the cost of forming, storing,

* or solving the model.

This paper summarizes two types of tensor methods, derivative tensor methods that cal-

culate an analytic or finite difference Jacobian at each iteration, and secant tensor methods

that avoid Jacobian evaluations. Both are shown to require no more function or derivative

information per iteration, and hardly more storage or arithmetic operations per iteration, than
standard linear model based methods. Computational results are presented that indicate that

both tensor methods are consistently at least as reliable as the corresponding linear model
based methods, and are significantly more efficient, both on nonsingular and on singular test

problems.
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1. Introduction

This paper summarizes a recently developed class of methods, called tensor methods, for

solving the nonlinear equations problem

given F: R"---R", find zVERR such that F(z)=0 (=.1)

where it is assumed that F(z) is at least once continuously differentiable. Tensor methods are

especially intended to efficiently solve problems where the Jacobian matrix of F at .,

F I(.) E R" ', is singular or ill-conditioned. They also are intended to be at least as efficient

as standard methods on problems where F (x,) is nonsingular. Their distinguishing feature is

that they base each iteration on a quadratic model of F(z) whose second order term has a sim-

ple form.

Systems of nonlinear equations arise frequently in many practical applications including

equilibrium calculations, curve tracing problems, and as subproblems in solving nonlinear sys-

tems of differential equations. In many important situations, F (xw) is singular or ill-

conditioned. For example, in some stiff systems of ordinary differential equations the Jacobian

of the associated system of nonlinear equations is nearly singular for all z. The calculation of

turning points in curve tracing problems and the solution of over-parameterized data fitting

problems are other common situations that lead to singular systems of equations. In all these

cases, it is important to notice that the (near) rank deficiency in the derivative matrix usually

is small. This is the case in which our methods are intended to improve upon standard

methods.

Standard methods for solving (1.1) base each iteration upon a linear model M(r) of F(r)

around the current iterate z ,-R,
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M(x, ±d) = F(x,) -+- JCd(1.2)

,I>'fl

where dER", JER . These methods can be divided into two classes: derivative methods,

where J. is the current Jacobian matrix F (z) or a finite difference approximation to it, and

secant methods, where Jc is a secant (quasi7Newton) approximation to the Jacobian. For a

general description of these methods, see e.g. Dennis and Schnabel [19831.

When the analytic Jacobian is available, the linear model (1.2) becomes

M(x,+d) = F(x,) + F (x,)d. (1.3)

The standard method for nonlinear equations, Newton's method, consists of setting the next

iterate x+ to the root of (1.3),

X+ =X - F (zX I-F(x,). (1.4)

If F (z,) is Lipschitz continuous in a neighborhood containing the root X. and F (z,) is non-

singular, then the sequence of iterates produced by (1.4) converges locally and q-quadratically

to XV. This means that there exist ,'>0 and c >'O such that the sequence of iterates ; Z ; pro-

duced by Newton's method obeys

Ilz k- - Xll C e IlC z - z lI

if i1z0 - rll . ,. In practice, local q-quadratic convergence means eventual fast convergence.

Newton's method usually is not quickly locally convergent, however, if F (r.) is singular.

For example when applied to one equation in one unknown (n -I) where f (x,)=O but

f'(z )-O, Newton's method is locally q-linearly convergent with constant converging to

meaning that the sequence of iterates ; x, obeys

ifk.I I Ck 'k - li r
k- •

if .r0 - r.1 is sufficiently small. For sysems of equations, the situation is more complex and

N..e,4
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has been analyzed by many authors, including Decker and Kelley lI980a, 1980b, 1982, Decker,

Keller, and Kelley 19831, Griewank 11980a, 1980b, 1985', Griewank and Osborne 1981,1983,

Keller '19701, Kelley and Suresh 1983', Rail 1966:, and Reddien !1978, 1980K. In summary,

their papers show that from many starting points, Newton's method for systems of equations

also is locally q-linearly convergent with constant converging to i:,, although for some problems

with starting points arbitrarily close to r., (1.4) may be undefined or lead further away from

the solution (see e.g. Griewank and Osborne '19831). In practice, Newton's method usually

exhibits local linear convergence with constant '2 on singular problems, much slower conver-

gence than one would like.

When analytic derivatives are unavailable and function evaluation is expensive, (1.1) gen-

erally is solved by a secant method. These methods attempt, as much as possible, to solve (1.1)

using only the function values at the iterate. ! 1 :ill bu I ', t , he mat rix .1 i

generated from these function values and may be a very rough approximation to F (.r,). In

the most commonly used secant method for systems of equations, Broyden's method, the Jaco-

bian approximation J, is chosen to be the smallest change to the previous Jacobian approxima-

tion which causes the new linear model M(x) to interpolate the value of F(x) at the previous

iterate. This results in a rank one change to the Jacobian approximation at each iteration.

(The details are given in Section 3.1.) The initial Jacobian approximation is made by finite

differences, and sometimes it is necessary to reset J to a finite difference approximation at

subsequent iterations.

The sequence of iterates produced by Broyden's method converges locally and q-

superlinearly to . as long as F (x,) is Lipschitz continuous in a neighborhood containing the

root z. and V (x) is nonsingular (Broyden, Dennis, and More '1973'). This means that there

exist -) and -0 such that the sequence of iterates x, obeys

5-.:, ---.-- , ,--. -.--. :,- ..-. -. -. -. -. -.-. . 1 -.%,
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lirn llzk+l - z1l / llZk - X l11 = 0

if llz 0  z Il , and llJ o - F(z 0)ll < r. In practice, secant methods still are quickly conver-

gent on nonsingular problems, and while they usually require more iterations than Newton's

method, they usually require fewer function evaluations than a finite difference implementation

of Newton's method.

However secant methods, like Newton's method, are slowly convergent on problems where

F (z.) is singular. For example on one variable problems with f(x, )=O but f (z..),, the

secant method is locally q-linearly convergent with constant converging to 0.618, a slightly

slower rate than Newton's method. For multiple variable problems with rank(F (x,,)) = n-,

Decker and Kelley 1985i have shown that this same rate of convergence is obtained by

Broyden's method from certain starting points. As in the case of Newton's method, this slow

linear convergence usually is observed in practice, making quicker methods desirable.

Several papers, for example Decker and Kelley !19821, Decker, Keller, and Kelley 1983,

Griewank [1980a, 19851, Kelley [19851, and Kelley and Suresh [1983, propose methods that are

rapidly convergent on some singular problems. Many of these methods are related to the one

dimensional acceleration technique of taking j times the Newton step if one has a root of mul-

tiplicity j. Some other methods explicitly calculate and use higher derivative information in

null space directions. To our knowledge, no computational experience with a complete method

of this type has been published, and it is not clear how amenable these techniques are to solv-

ing general systems of nonlinear equations where it is unknown a priori whether F (x,,) is

singular or not.

The major aim of tensor methods is to provide general purpose methods that have rapid

convergence even when F (x.) is singular. In addition, the methods should not experience any

special difficulty when J, is singular or ill-conditioned, while methods based on (1.2) must be

"-" , ' ..
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I modified in this case.

Tensor methods are based on expanding the linear model (1.2) of F(z) around x, to the

quadratic model

( d F(x, J Jd T, dd (1.5)

where T,.Rx and J, is F (z,) or a secant approximation to it. The three dimensional

object T, often is referred to as a tensor, hence we call (1.5) a tensor model, and methods

based upon (1.5) tensor methods. The term T, dd is defined by (Todd) i I = drH, d, where H, is

the 1'h horizontal face of T,. Thus the m(,del W,(x, d) is the n-vector of quadratic models of

the component functions of Fix),

(,[T(rZ-, d)) . = / - 9, d z = , , n

where J F(rz)ii, 9, - row 1 of F (x,) or an approximation to it, and it, Is an approxima-

tion to) the Hessian matrix of the i th component function of F(z).

The obvious choice of T, in (1.5) is the matrix F (x,) of second partial derivatives of F

at z,; if J, is F (z), this makes (1.5) the first three terms of the Taylor series expansion of F

around z,. Several serious disadvantages, however, make (1.5) with T, " (zr) unacceptable

for algorithmic use. First, the n second partial derivatives of F at z would have to be com-

puted at each iteration. Second, the model would take more than n 3/2 locations to store as

compared to the n locations for the standard model. Third, to find a root of the model. at

each iteration one would have to solve a system of n quadratic equations in n unknowns.

which for n • I requires an iterative procedure. Finally, the model might not have a real root.

To use a model of form (I,5) and avoid these disadvantages, our tensor methods use a

very restricted form of T,. In particular, our tensor methods requtire no additional derivative

or function information; the additional costs of forming and solving the tensor model are mall

compared to the O(n ) arithmetic cost per iteration of standard methods; and the additional
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storage required for our tensor models is small compared to the n storage required for the

Jacobian. The remainder of this paper describes how we utilize the tensor term T, in the

model (1.5) and what benefits we obtain from its inclusion. In Section 2 we summarize the use

of a tensor model in derivative methods for nonlinear equations, and our computational experi-

ence with this method. Section 3 similarly presents the use of and computational experience

with a tensor model in secant methods for nonlinear equations. In Section 4 we briefly com-

ment on extensions of tensor methods to nonlinear least squares and to unconstrained optimi-

zation. More details on this research can be found in Frank '1984, Schnabel and Frank 1984

and an upcoming paper by Frank and Schnabel.

Notice that we are denoting members of a sequence of n-vectors x by ,r where each

X Zt-R, and components of a vector v Rn by v'ie:R.

2. Derivative tensor methods

Derivative tensor methods base an algorithm for solving systems of nonlinear equations

on a model of the form

t T(r, -d) - F(z ) . F i. )d 'Tdd, (2.1)

where it is assumed that F (x,) either is supplied analytically or is calculated by finite

differences. Their aim is to choose TCtR " " so that the model (2.1) is hardly more expen-

"live to form, store, or iolve than the standard model (I.3), while still leading to an aigorithill

that requirev. fewer function evaluations than standard methods to solve diticult problems.

i
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2.1 Forming the tensor model

The first step in deriving a method based on (2.1) is to choose the second order term T,.

We do not use any second derivative information in constructing T,. Instead, we construct. the

* second order term in (2.1) by asking the model to interpolate additional values of the function

* F(z) that have already been computed by the algorithm. In particular, we ask the model to

satisfy

F(x-k) = F(,) F (,)s ',,T~sk s, k=1, .. p (2.2a)

where

s - k - zX, k-l, ,p (2.2h)

and x '_ r are some set of p not necessarily consecutive past iterates.

For the equations (2.2) to be consistent, the past points x_, must be selected so that

set of directions :,: is linearly independent. In fact, we enforce a far more restrictive condi-

tion. We always set z_ to the most recent iterate. We then include each remaining past

iterate in the set of points to be interpolated if the step from it to z makes an angle of at

least ) degrees with the subspace spanned by the steps to the already selected more recent

iterates. Here H- is some fixed angle between 20 and 45 degrees. In addition, we consider at

most ' n past iterates. The bounds % n and 20-45 degrees have been shown by computational

experience to be reasonable. This procedure for selecting past iterates to interpolate is imple-

mented easily using a modified Gram-Schmidt algorithm, and requires about n' multiplications

and additions.

The equations (2.2) are a set of rip - n linear equations in the it unknowns comprising

TC. Thus T_ is urnderdeterimined, so we follow the standard and -;uccssful practice in ,cc att

methods for nonlinear equations and optimization (see e.g. Dennis and Schnabel 1979 and

choose T to be the solution to

J,S



minimize 11 T IF(2,

subject to T, skn k  tk 2 ( F(x c) P(z') -- F (xC)sk ) k x1, p

where ' 11F is the Frobenius norm. If we denote by uvw the rank one tensor whose I" horizon-

tal face is the rank one matrix uli'(vwT), then the solution to (2.3) is shown by Schnabel and

Frank 1984' to be

'1

T, = V a k sk. "2.1)

k =1

where (a ii .a -  ,t 1 . T
, i=l, ,n, with If-R ' the positive

P P

definite matrix defined by Mi j) (s,rs )2, 1i,j.p.

Substituting (2.4) into the tensor model (2.1) -ives

p

"V(z--d) =F(x,) -- F (z)d V a. (d\ r (.

k=1

The simple form of the second order term in (2.5) is the key to being able to efficiently form,

store, and solve the tensor model. Since p -\,n, the additional storage for the entire method

2is at most I \ n n-vectors, compared to the n storage for F (x). The cost of forming the ten-
25

sor model by the above procedure is at most n multiplications and additions per iteration,

small compared to the at least n 3 13 multiplications and additions per iteration required by

"tandard methods.

p.



2.2 Solving the derivative tensor model

"o base an efficient algorithm on the tensor model (2.5), we need to efficiently find a root

of this model, that is a d R4 for which

p
T 2

Mr(x, -vd) = F(x) +- F (x,)d - '- _ a, (d Sk -=0. (2.6)
k=1

In some cases, the tensor model may have no root; it is then appropriate to choose d to minim-

ize the tensor model in some norm. We choose the 12 norm, so that the general problem we

wish to solve is to choose dR-R" to minimize IIMT(XC -d)1 2.

The basic idea behind efficiently solving (2.6) is that since MT only is quadratic on the p

dimensional subspace spanned by s, and is linear on the orthogonal complement to this sub-

space, it may be possible to solve (2.6) by solvimn a -wvtem of p quadratic equations in p link-

nowns plus a system of n-p linear equations in n-p unknowns. This is accomplished by a

procedure given in Schnabel and Frank [19841. This procedure first makes an orthogonal

T
transformation of the variable space to d = Q d, so that all n equations are quadratic only in

the last p components of d, d2GR P , and are linear in the first n-p components, d,_R " -P. It

then makes an orthogonal transformation of the equations that eliminates the linear variables

d, from the final p (actually q '--p, see below) equations and makes the preceding equations tri-

angular in d,. The result is n - q equations that are linear in the n--p variables d,

T

F1  Jd -h Jd + ' A 0 (.,a)
Ii 22 ' 2d2:'

where J, is upper triangular, plus the system of q quadratic equations in the p unknowns d,

T

. - J3d, - '2 A2 'S, d2, .0.

"-'° -" - '" "o Q. "m
°
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Here q _p, with q=p as long as J is nonsingular, or J is singular but J augmented by the p

rows I' has full column rank. In practice this means that q generally equals p unless

rank(F (zr)) < n-p. The root or minimizer of MT is then found from (2.7) by calculating the

d2 which is the root of minimizer of the quadratic system of equations (2.7b), substituting ti-is

d2 into (2.7a) and calculating d4 by solving a triangular system of linear equations, and multi-

plying d by Q to obtain d.

The cost of solving the tensor model by this process is the standard 2/3 n3 cost of a QR

factorization, plus an additional n 2p < n cost for the orthogonal transformation of the vari-

able space, plus the cost of solving the pxp system of quadratics. The latter is limited to O(p)

iterations which each cost p 3/6 multiplication and additions, so it is an insignificant 0(p 4)

0(n 2) cost. The case p =l is the most frequent in our computationai experience, and in this

case the quadratic equation is solved or minimized analytically. Thus solving the derivative

tensor model costs essentially the same as finding the root of the standard linear model (1.3) by

the QR factorisation. It is possible to adapt the tensor solution algorithm to use the PLU fac-

torization, or a sparse factorization, instead.

On singular problems with rank(F (x.)) > n-p, the solution of the tensor model by the

above process usually will be well posed. The convergence analysis for singular systems of non-

linear equations shows that near z, we can expect the past steps 1Sk to be in directions near

the null vectors of F (z.). In this case, the quadratic term of the tensor model supplies infor-

mation in the directions where the linear model is lacking. This results in the linear system

( 2 .7 a) being well conditioned, and moves the iil-conditioning of the standard linear model into

the linear term of the quadratic equations (2.7b), which still are well posed due to the qua-

dratic term.

4
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In addition, if F (x,) happens to be singular or ill-conditioned at any iteration on any

problem, and has p or fewer small or zero singular values, then the solution of the tensor model

usually will be well posed for similar reasons.

!4

2.3 Computational results with the derivative tensor method

A computer implementation of a derivative tensor method that is based upon the ideas

summarized in Sections 2.1 and 2.2 has been extensively tested. A high level description of the

method we have implemented is given in Algorithm 2.1.

Algorithm 2.1. An Iteration of the Derivative Tensor Method: given x,, F(xc)

1. Calculate F (z,) and decide whether to stop. If not

2. Select the past points to use in the tensor model from among the Vn most recent past

points.

3. Calculate the second order term of the tensor model, T1, so that the tensor model interpo-

lates F(z) at all the points selected in step 2.

4. Find the root of the tensor model , or its minimizer (in the 12 norm) if it has no real root.

5. Select z = x - X0 d,, where d, either is the step calculated in step 4 or the Newton step,

using a line search to choose \c'

8. Set z, - z, F(zc) - F(z+), go to step 1.

Details of our implementation are given in Frank 11984 and Schnabel and Frank f19841.

Note that the Newton step is calc dated as a byproduct of the tensor model solution, and occa-

sionally is used as the search direction in the tensor method. In particular, the Newton step is

used in step 5 if Algorithm 2.1 finds a root d. of the tensor model that isn't a descent direction

I -.-.-.. --.. .
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for IIF(x)i 2 (a very rare occurrence in practice but not precluded in theory) and the point

z +-dT is unacceptable; if Algorithm 2.1 finds a minimizer of the tensor model at which the 1,.

norm of the tensor model hasn't decreased enough from z,; or if Algorithm 2.1 fails to find a

root. or minimizer of the tensor model in 8p iterations.

We compared our tensor method to an algorithm that is identical except that the second

order term T, always is zero. That is, the comparison algorithm is a finite difference Newton's

method with a line search, except that the Newton step -J,-'F(zx) is modified to the approxi-

mat ion to the pseudo-inverse step --(J'J+ , 1) J, F(zj) with , small (see Dennis and Schna-

bel 1983) when J = F (z,) is singular or sufficiently ill-conditioned.

The Newton and tensor methods were compared on sets of nonsingular and singular test

problems. The results are summarized briefly in Tables 2.1 - 2.3. The nonsingular test prob-

lems are a standard set in this field, given in Morei, Garbow, and Hillstrom 19811; their dimen-

sions range from n = 2 to 30. The singular problems are simple modifications of these prob-

lems constructed to have the same solution z) with rank(F (z)) = n-I and n-2, respec-

tively. The procedure for generating these singular problems is described in Schnabel and

Frank 1984.

A significant feature of the test results is that the tensor method is virtually never less

efficient than the standard method, and is almost always more efficient. In fact, on problems

requiring ten or more iterations of the standard method, the tensor method always is more

efficient. The gains in efficiency on the nonsingular problems are an average of about 18'C if

all test problems, including some very easy problems where no gains are likely, are considered,

and an average of about 32c% improvement on the harder problems. The gains in efficiency on

the nonsingular problems are an average of about 40/ and 30" In the rank " I and r 2

cases, respectively, and an average of about 57d-o and 46"r improvement, respectively, on the

*i
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Table 2.1 -- Summary for Problems with F (z.) Nonsingular

Problem Number of Average Ratio, rensor Standard Tie
Set Problems Tensor Method / Standard Method Better Better

terations Jacobian Function

I evaluations evaluations

All problems 25 0.811 0.813 0.828 18 1 6
Harder problems only * 11 0.662 0.668 0.691 11 0 0

Additional problems solved by standard method only : 2

by tensor method only : I
Ji

Table 2.2 -- Summary for Singular Test Set with Rank (F (x,)) = n-I

All Problems .1 17 0l.576 0.609 0.603 15~ 0 12
Harder Problems Only * 9 I1 0.392 0. 12l 0. 13l 9 0 0

Table 2.3 -- Summary for Singular Test Set with Rank (F (x,)) = n-2

All Problems 13 0.6 1 0.535 0.529 I 0 0
, Harder Problems Only * 7 0.499 0.535 0.542 7 0 0

Additional problems solved by standard method only : I
by tensor method only : 5

• Problems where slower method required at least 10 iterations

harder problems. In addition, the tensor method solved significantly more of the problems with

rank(F (z.)) n-2 than the standard method; this is not reflected in Table 2.3 which reflects

only problems solved by both methods.
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The improvements by the tensor method on the problems with rank(F (z,)) = n-1 are

partially explained by the faster local convergence of the tensor method as discussed in Section

2.4. in fact, our stopping tolerances were relatively loose; at tighter stopping tolerances the

improvements by the tensor method on singular problems are greater. On nonsingular prob-

lems, the improvements by the tensor method apparently come from using a model that better

interpolates F(z); to our knowledge, the local convergence rate is no better than for Newton's

method.

These computational results indicate that the derivative tensor method is consistently as

reliable as currently used methods for solving systems of nonlinear equations. In addition, on

problems where function evaluation is the dominant cost, it is consistently as efficient and

often considerably more efficient, especially on problems with a small rank deficiency in F (z').

The additional cost on the tensor method in arithmric :,per-rions and computer storage is

small. Indeed, in our tests, even on problems with n = 30, the number of past points interpo-

lated by the tensor model generally was 1 or 2, so that the additional arithmetic and storage

costs are very small. For these reasons, we believe that the derivative tensor method should be

considered as a promising alternative to standard methods for general purpose software for

solving systems of nonlinear equations.

2.4 Convergence analysis for the derivative tensor method

Frank i1984j has extensively analyzed the local convergence of the derivative tensor

method. The most important result is that when rank(F (z)) = n-1, the method described in

the previous sections is shown to be locally 3-step convergent with q-order 7/6, meaning that if

liz 0  z 1 is sufficiently small, the sequence of iterates ,k: converges to z and, for some c -0,

obeys

-
A.......
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for all k ', 0. This rate of convergence is significantly faster than Newton's method which is

linearly convergent with constant approaching 1/2 under the same assumptions. For simplicity

of analysis, Frank's result is proven for a method that interpolates only the most recent past

iterate (p ~i); however it is not expected that interpolating additional past points would hurt

its performance.

The reasoning behind the three step convergence result is interesting because it helps

explain how the tensor method works on singular problems. From an arbitrary starting point

close to x),, it is shown that the first step provides at least linear convergence and results in an

*iterate whose error (its difference with t)is nearly in the direction of the null vector of

F (z,,). The next step also provides at least linear convergence and also results in an error

nearly in the null vector direction. Thus after two steps, the current iterate and the previous

iterate are both close to being along the null vector direction from x.~, so that the step a, (the

difference of these iterates) used in constructing the tensor term is essentially in this direction.

Thus the quadratic term of the tensor model provides information in precisely the direction

where the linear model is lacking. This causes the third step to be a fast one, in fact giving an

order 1.5 improvement which would lead to three step q-order 1.5. (The smaller 7/6 rate

cornes from allowing for the possibility that the first or second steps are, by luck, too good.)

After the third step, the error of the new iterate is not guaranteed to be close to the nill space

of F (z,,), so the three step process repeats. In practice, however, the errors appear to remain

close to the null space so that one step, at least q-superlinear, convergence is observed.

When the rank of F (z.~) is less than n-I, the derivative tensor method probably is not

faster than linearly convergent in theory because the model described in Section 3.1 does not

approximate enough of F -(z). However the test results of the previous section indicate that

fast convergence still is obtained in the case rank(F (z),,)) -n -2. It would be possible to
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approximate the necessary portions of F "(z) using previous values of the Jacobian rather than

the function; this has not be pursued.

When F (z)) is nonsingular Frank [19841 shows that the tensor method retains the q-

quadratic convergence of Newton's method. This simply means that close to the solution, the

quadratic term of the tensor model has a small effect and does not hurt the convergence.

When n=1 it can be shown that the derivative tensor method has q-order 2.41, but the tensor

method doesn't interpolate enough information for this result to extend to multi-dimensional

problems.

3. Secant Tensor Methods

When analytic Jacobians are unavailable and function evaluation is sufficiently expensive,

it is not cost effective to calculate a finite difference Jacobian approximation at each iteration

of a method for solving systems of nonlinear equations. Instead, secant methods are used that

only occasionally used finite difference Jacobians and otherwise base the method strictly upon

the function values at the iterates.

The standard secant method for nonlinear equations, Broyden's method, uses a linear

model of F(r) around z that interpolates only F(z,) and F(z 1 ), where x- is the previous

iterate. Thus there are additional previous function values, namely F(z_2 ), F(z- 3), ..., that a

method still could interpolate. In the derivative tensor method discussed in Section 2, the

interpolation of these function values was the basis for the tensor term T,. In the secant case,

however, since the first derivative matrix is not known, the value of F(z) at a previous iterate

z_ only is sufficient to determine a linear model in the direction z xk. Roughly speaking,



17

only if there are two previous iterates in the same direction from z is there sufficient informa-

tion to determine a quadratic model. This indicates that it will be more difficult to form a

quadratic model in the secant method case. Recall, however, that for singular problems the

iterates often converge nearly along a single direction so that a quadratic model still may be

. possible.

Thus before considering how one might base a tensor secant model upon the interpolation

of multiple function values, it is relevant to discuss how a linear secant model can interpolate

multiple function values. We first summarize this briefly, and then discuss when and how we

form a secant tensor model, and our computational results with the secant tensor method.

3.1 Linear Models with Multiple Secant Equations

Suppose x, is the current iterate and z_, ..., P are a set of p not necessarily consecu-

tive past iterates chosen as in Section 2.1. That is, z_, is the most recent past iterate, and the

set of directions I s* = 1, x - x, are linearly independent. Then it is possible to choose the

Jacobian approximation JCER" so that the secant model (1.2) interpolates F(x-k),

k=l, • ,p. This requires

F( X_,) = F(,) + Jcsk , k--1," .'p .(3.1)

If S, YERnXP are defined by column k of S = sk, column k of Y = F(xk) - F(zz), then

Schnabel 1983i shows that the closest matrix J, to the previous Jacobian J-, that causes (3.1)

to be satisfied is

= J-, -(Y-J-1 S) (STS)- S T (3.2)

jBroyflen's method simply is the special case of (3.2) with p =1. The update (3.1) appears to be

a rank p change to J _, but if the linear model at the previous update interpolated all the

--._.-. --- .9 .-.._,-. **.- .. .. . . . . . -
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same previous function values except F(xr), then (3.2) is a rank one update.

Multiple secant updates along these lines have been proposed by Barnes [19651, Gay and

Schnabel [1978j, and Schnabel (19831. Frank [19841 implemented a version where the past

iterates to interpolate are chosen by the fairly restrictive criteria described in Section 2.1,

essentially very strong linear independence plus only \ n iterates considered. Schnabel [19831

showed that this method is q-superlinearly convergent under the same conditions as Broyden's

method. Frank found that on the nonsingular problems from the Mori, Garbow, and Hillstrom

[19811 test set the multiple secant method was better on 10 problems, worse on 2, and about

the same on 21, with an average improvement of 10%. On the singular problems described in

Section 3.3, the multiple secant method was only marginally better than Broyden's method.

These results indicate that a properly implemented multiple secant method, using a

linear model, is consistently at least as efficient as Broyden's method. Therefore, our secant

tensor method, which also is based on interpolating multiple function values, builds upon this

linear multiple secant model.

3.2 Forming the Secant Tensor Model

To determine a second order model of F(z) using function values only, it is necessary to

have more than p+l function values that are nearly in some p dimensional subspace of the

variable space. To illustrate the approach taken in forming our secant tensor model, suppose

that there are two past iterates, zx_ and z- 2, and that the steps to them from z, s, and s 2,~T
are nearly linearly dependent. That is, s2 -- - where z T 8 0 and 1z 11/118211 is small.

The tensor secant model (1.5) interpolates F(z) at z and z2 if

F(xk) F(z,) +Jat +I',TSk~s , k 1, 2 (3.3)



In the situation where s, and s2 are nearly collinear, we interpret (3.3) as giving two

pieces of information in the direction s, and no new information in the direction z. Thus we

can make the a priori assumptions that

Jz = J tz , Tc s z = T, z z = 0 , (3.4)

for we know that our minimum norm methods for choosing J. and T, will cause them to

satisfy (3.4) if the secant equations are in the direction s only. Combining (3.3) and (3.4) and

using s2 = Is I +z gives

F(x-t) = F(z,) + Js + ,.T sts1  (3.5a)

F(X- 2) = F(z,) + J s I + JIz +((12/2) Tsts1 . (3.5b)

Equations (3.5) are two linear equations in the two unknown vectors "cs, and Tcslst, which

are easily solved to yield

J 1 = Y (2 U V) / (n2 - 0) (3.6a)

Ts s1 =31 (nu -V) /(o -2e) (3.6b)

where u = F(z-) - F(), v =F(x 2) -F(c)-J_lz.

Equations (3.6) are the secant equations for J, and T,, respectively. Given these condi-

tions, we form J, as in the linear model multiple secant method and Tc as in the derivative

tensor method. That is, J, is given by (3.2) withY = y and S = s,, while T, = a s, s1 with

a = t/(s[ s) . Thus the tensor model becomes

M(x -t-d) = F(z,) + J d - 1/2 a (wTd) 2  (3.7)

with w = st.

The remaining issue is the criterion for choosing s2 to be "nearly linearly dependent" on

s. The residual z cannot be allowed to be too large, or the inaccuracy in .I z may cause the

IC
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* tensor T to be entirely inaccurate. Frank 1984;i shows that it is necessary that HZ11 _

O(118 2 1 2) for the resultant T, to be reliable. Furthermore, he indicates that one can expect

consecutive iterates to satisfy this condition near the solution of a singular problem. There is

* no reason, however, to expect this condition to be satisfied for nonsingular problems. Thus it is

likely that the quadratic term in the secant tensor method will be used near the roots of singu-N lar problems only.

%: Frank '19841 has generalized the above procedures to use more past iterates. First he

chooses p strongly linearly independent directions to past iterates by the same process used in

the derivative secant method and the linear model multiple secant method. This set of direc-

tions is the generalization of the direction .9, in the above example. Then he chooses q direc-

tions to additional past iterates that are nearly dependent on the subspace spanned by the first

set, in the sense described above. This set ib Lilt !'I L .tlollU of tHI lirectlrin . , n the above

example. In our computational tests the second set contained 0 or 1 directions over 99% of the

* time, so it suffices to consider this case. The result is a set of equations similar to (3.5), which

are easily reduced to the conditions J~S =Y, T~ww = t, for S, YERn XP and some w in the

T 2span of the columns of S. J, then is chosen by (3.2) while T, aww with a =t/(w W)

Thus the secant tensor model again is given by (3.7).

% 3.3 Solving the Secant Tensor Model

Algebraically, the secant tensor model (3.7) is just the special case of the derivative ten-

sor model (2.5) with p=l. Thus its root or minimizer is found by the same procedures

described in Section 2.2. Since the tensor term has rank one, the solution process results 'in

j finding the root or minimizer of one quadratic equation in one unknown followed by the solu-

tion of a system of ri-- I linear equations and n -I unknowns. Therefore no iterative procedure
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is required and the cost is essentially the same as for finding the root of a linear model.

It is possible to perform each iteration of Broyden's method in O(n 2) operations by

sequencing a QR factorization of J as proposed originally by Gill and Murray 1972'. These

efficiencies can be extended to the secant tensor method so that it does not cost appreciately

2" more than the O(n ) implementation of Broyden's method. This was not done in our implemen-

tation.

In the case where the quadratic term of the secant tensor model has rank greater than

one (which virtually never occurred in practice), Frank '1984 solves the secant tensor model by

a minor generalization of the techniques of Section 2.2.

3.4 Computational Results with the Secant Tensor Method

A secant tensor method has been implemented and tested on the same nonsingular and

singular problems that were used for the derivative tensor method tests described in Section

2.3. The basic iteration is summarized in Algorithm 3.1 below.

Algorithm 3.1. An Iteration of the Secant Tensor Method: given z,, F(X,)

1. Decide whether to stop. If not:

2. Select the two sets of past points to use in the tensor model from among the ' n most

recent past points.

3. Calculate the first and second order terms of the tensor model, J, and Tc, so that the ten-

sor model interpolates F(z) at all the points selected in step 2.

4. Find the root of the tensor model, or its minimizer (in the 1, norm) if it has no real root.

5. Select z. by a trust region method that chooses z, to be a linear combination of the

4
steepest descent direction, and the step calculated in step 4 or the root of the linear part

.'. . - , . ..I_ . .
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of the model,

6. Set x,~ - z,, F(,).-.F(x+j, go to step 1.

In addition to the strategy shown in Algorithm 3.1, the Jacobian is calculated by finite

differences at the initial iteration and whenever the secant algorithm calculates two unsuccess-

ful trial steps in a row. This later practice is taken from Mor6's MINPACK algorithm (More,

* Garbow, and H-illstrom 19801) as is the use of a trust region strategy at step 5.

The secant tensor method described above was compared to a Broydlen's method version

and to a linear model multiple secant method version of the same code. These were derived by

setting T. 0 in the secant model, and by allowing one or multiple secant equations for the

Jacobian approximation, respectively (i.e., p=1l or p >1 in (3.1) and (3.2)). The remainder of

the code was unchanged.

On the non.4irgular test problems from More, Garbo%, and Hillstrom [19811, the secant

tensor method was better than Broydlen's method on 9 problems, worse on 5, and about the

same on is, with an average improvement in function evaluations of 9%7. These results are

marginally worse than the results for the linear model multiple secant rncthod given in Section

3.1. Thus adding multiple interpolation conditions to the linear model seems to help a bit on

nonsingular problems, but the tensor term seems to give no additional help.

6 ~On the test problems with rank F (x.) = n -1, the secant tensor method was better then

Broydlen's method on 18 problems, worse on 1, and tied on 4, with an average improvement of

F 25%. On the test problems with rank F '(x.) =n--?, the secant tensor method was better

than lBroyden's method on 18 problems, worse on 1, and tied on 1, with an average improve-

ment of 33'r. In both of these cases, the linear model multiple secant method was not appr'ci-

ably better than Broydlens mrethod. Thus the addition of a tensor term seems to help consider-

ably on problem~, with a low rank singularity at the solution.
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In over 99% of the iterations on each test set, the rank of the tensor term was 0 or 1.
4

Implementing a secant tensor method with a rank one tensor requires little additional storage

and very few additional arithmetic operations in comparison to Broyderi's method. Thus it,

appears that the gains mentioned above can be obtained at little additional cost to the com-

puter, and a reasonably small increase in the complexity of the code. Therefore, such a secant

tensor code might be a useful general purpose alternative to a Broyden's method code in a set-

ting where singular or ill-conditioned problems are solved regularly.

4. Extensions of Tensor Methods to Optimization Problems

The nonlinear least squares problem

min IIF(x)112 , F : -" (4.1)

rER'

can be viewed as an overdetermined version of the nonlinear equations problem (1.1). For non-

linear least squares, the Jacobian matrix always is computed analytically or approximated by

finite differences. Thus it is natural to consider extending the derivative tensor method sum-

marized in Section 2 to solving (4.1).

The derivative tensor method extends to overdetermined systems of equations with very

little change. The formation of the tensor model is unchanged except that the model has rn

quadratic components rather than n. The solution procedure outlined in Section 2.2 now

6. reduces the quadratic equations to the solution, in a least squares sense, of m - n -p quadratic

equations in p unknowns, followed by the solution of n-p linear equations in n p unknowns.

(If p - 0 this is just the QR algorithm for solving the linear model in the least squares sense.J

The cost in arithmetic operations and computer storage again is hardly more than for a

. . - *. ... - .-. . , . . - >.
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standard method for nonlinear least squares.

A tensor method for nonlinear least squares along these lines currently is being imple-

mented at the University of Colorado. This approach is most closely related to other nonlinear

equations based approaches to nonlinear least squares. Of these the most computationally

efficient appears to be More's trust region Levenberg Marquardt algorithm (More" [1978)),

implemented in MINPACK (More', Garbow, and Hillstrom [1980), and it will be interesting to

see how the tensor method compares to this on full rank and rank deficient problems. An

alternate approach to nonlinear least squares, related more closely to viewing the problem as a

special case of unconstrained optimization, is embodied in the NL2SOL algorithm of Dennis,

Gay and Welsh 119811. We also intend to compare the tensor method for nonlinear least

squares to this approach.

The general unconstrained optimization problem is

min f(z): R - R (4.2)
zER'

The necessary condition for a solution of (4.2), 7-ff(x) 0, is a system of n nonlinear equationsVI
in n unknowns. The standard local method for (4.2), also called Newton's method, simply is

derived by applying (1.4) to this system of equations.

Thus it is tempting to expect that the tensor method for nonlinear equations can be

applied to unconstrained optimization simply by applying the methods of Sections 2 and 3 to

the system of equations Vf(x) -=0. This approach has several major flaws. One is that all the

derivatives of the unconstrained optimization problem are symmetric, .;o that their approxima-

tion should be too, but the tensors T, derived in Sections 2 and 3 are not 3-way symmetric.

More importantly, if an unconstrained optimization problem has a singular Hessian matrix at
4

a local minimizer, then the projection of the third derivative tensor 7 3f(x.) in the null space

direction v of the Hessian (i.e. 7- f(x.) v t, v) must also be 0. Thus approximating the third

I&
i .
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derivative for unconstrained optimization, the analog of approximating the second derivative

as is done in our tensor methods for nonrlinear equations, would not be expected to help solve

singular unconstrained optimization problems. It appears that approximations to both the

* third and fourth derivative matrices will be required to help solve singular optimization prob-

* lems.

An approach to tensor methods for unconstrained optimization that makes small rank

* approximations to the third and fourth derivatives currently is underway at the University of

Colorado. The effect of approximating both third and fourth derivative matrices is that, at

each iteration, one must solve a small system of cubic equations in addition to the remaining

linear equations. The storage and arithmetic overhead remains reasonable. Very preliminary

computational results using this approach to solve singular optimnization problems are
* encouraging.

v''A
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